stitution reaction and the influence of substituents on the molecule folding.

This research was supported by the Robert A. Welch Foundation Grant F-017 (SHS), and the Natural Sciences and Engineering Research Council of Canada (RGS). KAA would like to thank Robert LaMont for his help in structure refinement.

References

Cordes, A. W. (1983). Personal communication.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gadol, S. M. \& Davis, R. E. (1982). Organometalics, 1, 1607-1613.

International Tables for X-ray Crystallography (1974). Vol. IV, p. 55. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
larson, S. B., Simonsen, S. H., Martin, G. E., Smith, K. \& Puig-Torres, S. (1984). Acta Cryst. C40, 103-106.
Lee, C. C., Piórko, A. \& Sutherland, R. G. (1983). J. Organomet. Chem. 248, 357-364.
Lynch, V. M., Thomas, S. N., Simonsen, S. H., Piórko, A. \& Sutherland, R. G. (1986). Acta Cryst. C42, 1144-1148.
Riley, P. E. \& Davis, R. E. (1976). Acta Cryst. B32, 381-386.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1987). SHELXTL-PLUS. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Simonsen, S. H., Lynch, V. M., Sutherland, R. G. \& Piórko, A. (1985). J. Organomet. Chem. 290, 387-400.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Sutherland, R. G., Piórko, A., Gill, U. S. \& Lee, C. C. (1982). J. Heterocyl. Chem. 19, 801-803.

Relationship Between X-ray Structure and Phosphodiesterase Activity of Co ${ }^{\text {III }}$ Complexes: Structure of Dinitro[tris(2-aminoethyl)amine]cobalt(III) Chloride

By Jik Chin* and Marc Drouin
Department of Chemistry, McGill University, Montreal, Canada, H3A 2 K6

and André G. Michel*
Laboratoire de chimie structurale, Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
(Received 10 July 1989; accepted 9 January 1990)

Abstract

Co}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{4}\right)\right] \mathrm{Cl}, M_{r}=332 \cdot 6\), orthorhombic, Pcmb, $a=8.452$ (6), $b=12.0735$ (4), $c=$ $12 \cdot 1733$ (8) $\AA, \quad V=1242 \cdot 23 \AA^{3}, D_{x}=1 \cdot 778 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=4, \quad \lambda($ Mo $K a)=0.71069 \AA, \quad \mu=1.61 \mathrm{~mm}^{-1}$, $F(000)=687.80$, room temperature, final $R=0.024$ for 749 reflections in the range $00 \cdot 00<2 \theta<47 \cdot 90^{\circ}$. All of the cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles in the parent compound are essentially the same as the corresponding angles in $\left[(\right.$ tren $) \mathrm{Co}\left(\mathrm{CO}_{3}\right)^{+}$[tren: tris(2aminoethyl)amine]. In sharp contrast, one of the cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles increases dramatically on going from $\left[(\text { cyclen }) \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$to $[$(cyclen)$\left.\mathrm{Co}\left(\mathrm{CO}_{3}\right)\right]^{+}$(cyclen: 1,4,7,11-tetraazacyclododecane). Relative reactivity of $\left[(\text { tren }) \mathrm{Co}\left(\mathrm{OH}_{2}\right)(\mathrm{OH})\right]^{2+}$ and $\left[(\text { cyclen }) \mathrm{Co}\left(\mathrm{OH}_{2}\right)(\mathrm{OH})\right]^{2+}$ in hydrolyzing phosphate diesters is explained in terms of the cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angle.

Introduction. Currently there is much interest in designing catalysts that hydrolyze the phosphate di-

[^0]ester backbone of DNA (Dervan \& Moser, 1987). We recently showed that cis aquahydroxo(tetraamine) Co $^{\text {III }}$ complexes are highly efficient at hydrolyzing phosphate diesters (Chin \& Zou, 1988). Furthermore, the reactivity of $\mathrm{Co}^{\mathrm{III}}$ complexes is extremely sensitive to the tetraamine ligand structure (Chin, Banaszczyk, Jubian \& Zou, 1989; Chin \& Banaszczyk, 1989a,b). For example, the phosphate diester bond in (1) is hydrolyzed about 50 times more rapidly than that in (2). In order to find out why (1) is so much more reactive than (2), we determined the crystal structure of (2^{\prime}) (see Fig. 1).

Experimental. [(tren) $\left.\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}$ was prepared from $\left[(\right.$ tren $\left.) \mathrm{CoCl}_{2}\right] \mathrm{Cl}$ following the procedure described for the preparation of $\left[(\mathrm{en})_{2} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}$ (Bernal, 1985). Anal. calc. for $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{4}\right)\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}: \mathrm{C} 21 \cdot 68, \mathrm{H}$ $5 \cdot 46$, N $25 \cdot 39 \%$. Found: C $22 \cdot 06$, H $5 \cdot 25$, N $25 \cdot 66 \%$.

The X-ray diffraction was performed on an orange rectangular crystal, $0.20 \times 0.20 \times 0.25 \mathrm{~mm}$; EnrafNonius CAD-4 diffractometer with graphite monochromator and Mo $K \alpha$ radiation. The cell dimen-
(C) 1990 International Union of Crystallography
sions were obtained from 31 reflections with $40.00<$ $2 \theta<45 \cdot 00^{\circ}$, hkl range: $h=8, k=12, l=13$. The $\omega / 2 \theta$ scan mode was used with maximum 2θ of 47.9°. 3 standard reflections measured every 100 reflections; variation $2 \% .851$ reflections were measured [749 with $I_{\text {net }}>2 \cdot 5 \sigma\left(I_{\text {net }}\right)$]. The structure was solved by direct methods and refined on F with NRCVAX (Gabe, Lee \& LePage, 1985). The last least-squares cycles were calculated with 22 atoms, 94 parameters. Weights based on counting statistics were used. The final residuals for significant reflections were $R_{f}=0.024, w R=0.020$ and $S=2.272$; structure factors from International Tables for X-ray Crystallography (1974). All H atoms were calculated and refined isotropically. The secondary-extinction coefficient was refined and converged to $0 \cdot 18$ (2) (Larson, 1967; Zachariasen, 1963). The maximum shift/e.s.d. ratio was $0 \cdot 131$. In the last D map, the deepest hole was $-0.35 \mathrm{e} \AA^{-3}$ and the highest peak $0 \cdot 26 \mathrm{e} \AA^{-3}$ both around C 4 . The high thermal parameters on C 4 show a disordered atom because of the non-planarity of the five-membered ring. The $\mathrm{Co}, \mathrm{C} 3, \mathrm{C} 4, \mathrm{~N} 1, \mathrm{~N} 3, \mathrm{~N} 6$ and N 5 atoms are in a crystallographic mirror and Cl on a 2 axis, all with a multiplicity of four. All other atoms are on a general position with a multiplicity of eight.

(1)

(2)

(1^{\prime})

(2')

(2a)

(1a)

(2a')

Fig. 1. Change in cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles (${ }^{\circ}$) with fourmembered ring formation.

Fig. 2 shows the ORTEP diagram of [(tren)Co$\left.\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$. The final parameters and $B_{\text {eq }}$ values for the cobalt complex are given in Table 1.* The Co atom is surrounded by six nitrogens. The $\mathrm{Co}-\mathrm{N}$ bond lengths range from 1.963 (3) to 1.909 (3) \AA (Table 2).

The cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles included in the three five-membered rings are $85.82(7)^{\circ}$ for N 1 -$\mathrm{Co}-\mathrm{N} 2$ and $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$, and $87.14(14)^{\circ}$ for $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$ respectively. Fig. 3 shows the packing diagram. Each of the primary amines is involved in two hydrogen bonds: N2 (and N4 by symmetry) with two different Cl (hydrogen bonds 1 and 4); and N3 with two Cl (hydrogen bonds 2 and 3). The Cl atom is intercalated in such a way as to form four hydrogen bonds with two different molecules of the cobalt complex.

Discussion. Cobalt complexes (1) and (2) are closely related structurally and electronically. Both are held rigidly in the cis form and cannot isomerize to the trans form (Iitaka, Shina \& Kimura, 1974). The Lewis acidity of the two cobalt centers should be comparable since the basicities of the metal hydroxides in (1) and (2) are about the same (Chin, Banaszczyk, Jubian \& Zou, 1989). Why then should

[^1]

Fig.2. Thermal ellipsoid plot (50% probability level) and atomic labeling for $\left[\mathrm{Co}(\text { tren })\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$.

Table 1. Final coordinates and B values for non- H atoms with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Co	$0 \cdot 27283$ (6)	3/4	$0 \cdot 13253$ (4)	1.56 (3)
Cl	0.96396 (13)	1/2	1/4	$2 \cdot 62$ (5)
N1	0.2425 (4)	3/4	-0.02732 (25)	1.70 (16)
N3	0.0437 (4)	3/4	$0 \cdot 1455$ (3)	1.95 (16)
N4	0.2772 (3)	$0 \cdot 58895$ (18)	$0 \cdot 12036$ (18)	2.14 (11)
N5	$0 \cdot 2923$ (4)	3/4	0.2888 (3)	2.07 (17)
N6	0.5041 (4)	3/4	0.1316 (3)	2.31 (18)
Cl	0.3186 (4)	0.6465 (3)	-0.06900 (23)	$2 \cdot 55$ (14)
C2	0.2657 (4)	0.55327 (23)	0.00341 (24)	2.89 (15)
C3	0.0686 (5)	3/4	-0.0548 (4)	2.48 (22)
C4	-0.0333 (7)	3/4	0.0408 (4)	$8 \cdot 2$ (5)
O1	0.2989 (3)	$0 \cdot 66185$ (17)	0.33969 (15)	$3 \cdot 82$ (12)
O3	0.5787 (3)	0.66221 (19)	$0 \cdot 13638$ (19)	$4 \cdot 19$ (12)

Table 2. Intramolecular bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Co}-\mathrm{N}(1)$	1.963 (3)	$\mathrm{N}(3)-\mathrm{C}(4)$	1.431 (6)
$\mathrm{Co}-\mathrm{N}(2)$	1.9504 (21)	$\mathrm{N}(4)-\mathrm{C}(2)$	1.491 (4)
$\mathrm{Co}-\mathrm{N}(3)$	1.943 (4)	$\mathrm{N}(5)-\mathrm{O}(1)$	1.233 (3)
$\mathrm{Co}-\mathrm{N}(4)$	1.9504 (21)	$\mathrm{N}(5)-\mathrm{O}(2)$	1.233 (3)
$\mathrm{Co}-\mathrm{N}(5)$	1.909 (3)	$\mathrm{N}(6)-\mathrm{O}(3)$	1.235 (3)
$\mathrm{Co}-\mathrm{N}(6)$	1.955 (4)	$\mathrm{N}(6)-\mathrm{O}(4)$	1.235 (3)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.495 (3)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.498 (4)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.495 (3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.447 (7)
$\mathrm{N}(1)-\mathrm{C}(3)$	$1 \cdot 508$ (6)		
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	87.14 (14)	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(3)$	$110 \cdot 30$ (24)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(4)$	85.82 (7)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	113.5 (3)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	$85 \cdot 82$ (7)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	110.16 (19)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(5)$	177.45 (14)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(3)$	110.16 (19)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(6)$	97.17 (14)	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(4)$	112.4 (3)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(4)$	91.44 (7)	$\mathrm{Co}-\mathrm{N}(4)-\mathrm{C}(2)$	111.07 (16)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(2)$	91.44 (7)	$\mathrm{Co}-\mathrm{N}(5)-\mathrm{O}(1)$	120.30 (16)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(5)$	$90 \cdot 31$ (14)	$\mathrm{Co}-\mathrm{N}(5)-\mathrm{O}(2)$	$120 \cdot 30$ (16)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(6)$	175.69 (15)	$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(2)$	119.4 (3)
$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(2)$	171.01 (10)	$\mathrm{Co}-\mathrm{N}(6)-\mathrm{O}(3)$	120.70 (18)
$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(5)$	94.25 (7)	$\mathrm{Co}-\mathrm{N}(6)-\mathrm{O}(4)$	120.70 (18)
$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(6)$	88.88 (7)	$\mathrm{O}(3)-\mathrm{N}(6)-\mathrm{O}(4)$	118.3 (3)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(5)$	94.25 (7)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.45 (23)
$\mathrm{N}(2)-\mathrm{CO}-\mathrm{N}(6)$	88.88 (7)	$\mathrm{N}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	108.98 (22)
$\mathrm{N}(5)-\mathrm{Co}-\mathrm{N}(6)$	85.38 (15)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	113.7 (4)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$	$106 \cdot 28$ (17)	$\mathrm{N}(3)-\mathrm{C}) 4)-\mathrm{C}(3)$	116.4 (4)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(5)$	$106 \cdot 28$ (17)		

The following atoms are the symmetry equivalents			
$\mathrm{N}(2)$ and $\mathrm{N}(4)$	x	$1.500-y$	z
$\mathrm{C}(5)$ and $\mathrm{C}(1)$	x	$1.500-y$	z
$\mathrm{C}(6)$ and $\mathrm{C}(2)$	x	$1.500-y$	z
$\mathrm{O}(2)$ and $\mathrm{O}(1)$	x	$1.500-y$	z
$\mathrm{O}(4)$ and $\mathrm{O}(3)$	x	$1.500-y$	z

Fig. 3. Stereoview of the unit-cell content of $\left[\mathrm{Co}(\text { tren })\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$ with intermolecular hydrogen bonds represented in dotted lines.
the reactivity of the phosphate diester bond in (1) and (2) be so sensitive to the tetraamine ligand structure? Hydrolysis of (1) and (2) involves the formation of a four-membered ring translation state or intermediate (equations 1 and 2). This should result in considerable distortion of the octahedral complex. For example, X-ray data show that ($1 a^{\prime}$) (Schlemper, Sen Gupta \& Dasgupta, 1983) and ($2 a^{\prime}$) (Leohlin \& Fleischer, 1976) are distorted compared to (1^{\prime}) and (2^{\prime}) respectively. The $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles (f, Fig. 1) of ($1 a^{\prime}$) $\left(68.4^{\circ}\right)$ and ($2 a^{\prime}$) $\left(68.5^{\circ}\right)$ are significantly less than the corresponding (f) angles of (1^{\prime}) $\left(84 \cdot 5^{\circ}\right)$ (Iitaka, Shina \& Kimura, 1974) and (2^{\prime}) $\left(85 \cdot 4^{\circ}\right)$. There is one outstanding difference between the Co(cyclen) system and the Co(tren) system. On going from structure (1^{\prime}) to ($1 a^{\prime}$) all of the cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles remain essentially the same except the angle opposite (o) the four-membered ring which increases dramatically (7.7°). In sharp contrast, on going from (2^{\prime}) to ($2 a^{\prime}$), all of the cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles including the opposite angle (o) remain essentially the same. The opposite angle (o) in ($2 a^{\prime}$) is locked into a five-membered ring and cannot be expanded significantly.

The Co(cyclen) system and the Co(tren) system are particularly well suited for comparison. Both ($1 a^{\prime}$) and ($2 a^{\prime}$) have several $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles that are locked into five-membered rings. In $\left(1 a^{\prime}\right)$ it is the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angle that is opposite (o) the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angle that is not locked into a five-membered ring. In ($2 a^{\prime}$) two $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles that are adjacent (a) to the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angle are free. The four-membered ring formation results in the increase in the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles opposite the four-membered ring but does not affect the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angle adjacent to it. The fourmembered ring is stabilized by increasing the opposite $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angle but is not affected significantly by the adjacent $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angles.

Clearly structures ($1 a^{\prime}$) and ($2 a^{\prime}$) are not the same as structures (1a) and (2a) respectively. However, the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles in ($1 a$) and (2) should also be considerably less than the 90° angle found in regular octahedral complexes for the following reasons. In a totally strain-free system, the $\mathrm{O}-\mathrm{Co}-\mathrm{O}, \mathrm{Co}-\mathrm{O}-\mathrm{P}, \mathrm{O}-\mathrm{P}-\mathrm{O}$ and $\mathrm{P}-\mathrm{O}-\mathrm{Co}$ bond angles in (1a) or ($2 a$) should add up to 399° (90 $+109 \cdot 5+90+109 \cdot 5$). In any four-membered ring, the sum of the angles must be less than or equal to 360°. Therefore, each of the four angles in the fourmembered ring [(1a) or ($2 a$)] must be compressed compared to the strain-free bond angles. In particular, the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles in (1a) and (2a) should be less than 90°.
It is well known that in enzymic systems, subtle changes in the structure of the active center can greatly influence the activity of the enzyme. We have
shown that subtle changes in the tetraamine ligand structure causes a change in the cis $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bond angle and a dramatic change in the reactivity of the cobalt complex. Knowledge of such detailed structure-reactivity relationship is valuable since it can give insights into the rational design of highly reactive cobalt complexes.

We thank Professor André L. Beauchamp for valuable comments. Support for this work from the National Sciences and Engineering Reseach Council of Canada is gratefully acknowledged.

References

Bernal, I. (1985). Inorg. Chim. Acta, 96, 99-110.
Chin, J. \& Banaszczyk, M. (1989a). J. Am. Chem. Soc. 111, 2724-2726.

Chin, J. \& Banaszczyk, M. (1989b). J. Am. Chem. Soc. 111, 4103-4105.
Chin, J., Banaszczyk, M., Jubian, V. \& Zou, X. (1989). J. Am. Chem. Soc. 111, 186-190.
Chin, J. \& Zou, X. (1988). J. Am. Chem. Soc. 110, 223-225.
Dervan, P. B. \& Moser, H. E. (1987). Science, 238, 645-650.
Gabe, E. J., Lee, F. L. \& Le Page, Y. (1985). The NRCVAX Crystal Structure System. In Crysallagraphic Computing 3: Data Collection, Structure Determination, Proteins and Databases, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 167-174. Oxford: Clarendon Press.
Ittaka, Y., Shina, M. \& Kimura, E. (1974). Inorg. Chem. 13, 2886-2891.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Leohlin, J. H. \& Fleischer, E. B. (1976). Acta Cryst. B32, 3063-3066.
Schlemper, E. O., Sen Gupta, P. K. \& Dasgupta, T. P. (1983). Acta Cryst. C39, 1012-1015.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1147.

Structure of 1-Methyl-1H-imidazole-5-ethanamine Dihydrochloride

By Marek L. Geówka, Zdzislaw Galdecki and Iwona Iwanicka
Institute of General Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

(Received 7 June 1989; accepted 30 August 1989)

Abstract

Ammonioethyl)-1-methyl-3 H^{+}-imidazolium chloride, $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3}^{2+} .2 \mathrm{Cl}^{-}, M_{r}=198 \cdot 10$, monoclinic, $P 2_{1} / n, a=4 \cdot 60$ (1), $b=13 \cdot 57$ (1), $c=$ 15.43 (2) $\AA, \beta=98.37(3)^{\circ}, V=952.9 \AA^{3}, Z=4, D_{x}$ $=1.381, \quad D_{m}=1.38 \mathrm{Mg} \mathrm{m}^{-3}, \quad F(000)=416, \quad T=$ 293 K , Мо $K \alpha(\lambda=0.71069 \AA), \mu=6.29 \mathrm{~mm}^{-1}, R$ $=0.030$ for 1484 reflections used in the refinement. Diprotonated methylhistamine molecules are hydrogen bonded through chloride ions. The ethylamine chain is in a trans conformation and the plane defined by three non-H atoms of the chain is perpendicular to the plane of the imidazole ring.

Introduction. Ganellin's works on conformation and activity of histamine and methylhistamines have shown that the trans conformation of the ethylamine chain dominates in aqueous solution for all protonated forms and that N-methylation has little influence on the chain conformation (Ganellin, 1973; Ganellin, Pepper, Port \& Richards, 1973; Ganellin, Port \& Richards, 1973). However, pros-methylation seems to be important for the orientation of the ethylamine chain. Thus we undertook this study as a continuation of the program on structures of hista-
mines and their complexes (Główka, Gałdecki, Kazimierczak \& Maślínski, 1980; Główka \& Gilli, 1989).

Experimental. The crystals of the compound were recrystallized from 2-propanol. D_{m} by flotation. The intensity data to $\theta_{\text {max }}=25^{\circ}$ were obtained from a crystal of size $0.44 \times 0.38 \times 0.15 \mathrm{~mm}$ by $\omega / 2 \theta$ scan technique on a CAD-4 diffractometer. Cell constants from setting angles of 25 reflections with $9<\theta<15^{\circ}$. 3 standard reflections, measured every 100 reflections; 2% variation. $-5 \leq h \leq 5 ; 0 \leq k \leq 15 ; 0 \leq l \leq$ 18. From the 1860 reflections measured, 1637 had I $>3 \sigma(I)$. Absorption was neglected. The structure was solved by direct methods with SHELXS86 (Sheldrick, 1986) and H -atom positions were found from difference Fourier maps. The final agreement factors of $0.030(R)$ and $0.041(w R)$ were obtained after full-matrix least-squares refinement on F based on 1484 intensities with $F_{o}>3 \sigma\left(F_{o}\right)$ (non-H atoms with anisotropic and H atoms with isotropic thermal parameters). The final weighting scheme used was w $=k /\left[\sigma^{2}\left(F_{o}\right)+d F_{o}^{2}\right]$, where k and d were 0.382 and 0.0079 , respectively. $(\Delta / \sigma)_{\max }=0.08$. Max. and min.
© 1990 International Union of Crystallography

[^0]: * Authors to whom correspondence should be addressed.

[^1]: * Lists of structure factors, torsion angles, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52585 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

